
© Copyright Malina Software 2023

Matching
Software with Reality
-- “Software Meets the Real World” –

Bran Selić

Malina Software Corp. (Canada)
Monash University (Australia)

35th International Conference on Advanced Information Systems Engineering

A Reflective Back to Front View

© Copyright Malina Software 20232

A Teaser…

Do you happen to know the interesting story
behind this number?

We shall return to this question later…

© Copyright Malina Software 20233

Part 1:
Where We Came

From

“If we desire to understand something,
we need to know how it came to be.”

-Aristotle

© Copyright Malina Software 20234

“Too few people recognize that the high technology so
celebrated today is essentially a mathematical technology.”

Where It All Started…

 The initial applications were for numerical analyses

 Computing technology design was heavily influenced by the end users: mathematicians

 Mathematicians preferred to view computers as technological
embodiments of abstract mathematical concepts

▪ This approach has had (and still has) a fundamental influence on software technology

Codebreaking Ballistics Table

Computations

Edsgar W. Dijkstra:

© Copyright Malina Software 20235

“Too few people recognize that the high technology so
celebrated today is essentially a mathematical technology.”

Where It All Started…

 The initial applications were for numerical analyses

 Computing technology design was heavily influenced by the end users: mathematicians

 Mathematicians preferred to view computers as technological
embodiments of abstract mathematical concepts

▪ This approach has had (and still has) a fundamental influence on software technology

Codebreaking Ballistics Table

Computations

Edsgar W. Dijkstra:

“I see no meaningful difference between programming
methodology and mathematical methodology.” (EWD 1209)

engineering

© Copyright Malina Software 20236

“[The interrupt] was a great invention, but also a Pandora’s
Box… essentially, for the sake of efficiency, concurrency
[became] visible… and then all Hell broke loose.” (EWD 1303)

The First Engineering Applications

 Application to monitoring and control of real-world phenomena

▪ A qualitative shift away from the mathematical view of computers and computing
towards the engineering domain

Codebreaking Ballistics Table

Computations
Air Defense

(Real time)

Edsgar W. Dijkstra:

Actually, the real justification for interrupts was to provide a
means for computers to detect and respond in a timely fashion
to changes in their physical environment

© Copyright Malina Software 20237

The Consequences

 This mathematical bias has led to a situation where
many of our core software technologies are not well
suited to engineering type applications

▪ Most major computer languages only support abstract numerical
types (integer, real, Boolean…) but not physical value types (pounds,
liters, seconds, etc.)

• E.g., Mars Climate Orbiter disaster: due to metric vs. Imperial data type
incompatibility

▪ Most major theories of computation assume that computations are
instantaneous

▪ Even real-time OS schedulers use abstract concepts such as priority
for scheduling real-time tasks

▪ …and, so on

 However, today’s trend is a greater turning towards
engineering-type applications

© Copyright Malina Software 20238

Part 2:
Current Trends in
Software-based

Systems

© Copyright Malina Software 20239

The Trend of 21st Century Software…

Smart Homes

Self-driving Smart Cars

Smart Robots

Smart Cities

“Smart Anything Everywhere”
-- Official slogan of EU’s H2020 research initiative

(https://smartanythingeverywhere.eu/)

© Copyright Malina Software 202310

The Trend of 21st Century Software…

Smart Homes

Self-driving Smart Cars

Smart Robots

Smart Cities

“Smart Anything Everywhere”
-- Official slogan of EU’s H2020 research initiative

(https://smartanythingeverywhere.eu/)

What exactly do we mean by “smart”?

© Copyright Malina Software 202311

General Capabilities of “Smart” Systems*

A system that can:
a. Sense the state of its context and detect relevant changes

in that context or in its own internal state, as they occur
(i.e., in real time)

b. Respond to such changes in a timely manner in a way that is
consistent with or conducive to its intended purpose

c. Adjust its behavior to deal with previously unknown or
unexpected situations based on available data and/or its
history

*NB: my definition

© Copyright Malina Software 202312

General Capabilities of “Smart” Systems*

A system that can:
a. Sense the state of its context and detect relevant changes

in that context or in its own internal state, as they occur
(i.e., in real time)

b. Respond to such changes in a timely manner in a way that is
consistent with or conducive to its intended purpose

c. Adjust its behavior to deal with previously unknown or
unexpected situations based on available data and/or its
history

*NB: my definition

Capable of interacting
effectively with the “real”
(i.e., physical) world

Key Question:

Do we currently have the know-how to

design and build such “Smart” systems

in a reliable and systematic manner?

© Copyright Malina Software 202313

Part 3:
An Illustrative

Example

© Copyright Malina Software 202314

Traditional parking brake

($$$)

Case Study: Hi-Tech Parking Brake (1)

But, how
should we
release the

brake?

replaced by

Pushbutton (₵) Brake

Brake

control

SW

© Copyright Malina Software 202315

AC System

Case Study: Hi-Tech Parking Brake (2)

1. On a hot day, the driver enabled the parking brake
and exited the vehicle temporarily – leaving the door
open

2. High external temperature quickly raised cabin
temperature

3. AC control software activated AC compressor

4. This activation created additional demand for
electrical power

5. Dynamo suddenly increased its RPM rate

6. Brake released; car started moving with no driver
present!

Solution:

Release brake when

accelerator pressed

Brake

Brake

control

SW

Dynamo

AC control
SW

AC compressor

Cabin

temperature

sensor

RPM
sensor

© Copyright Malina Software 202316

Braking SystemAC System

“Divide and Conquer”?

Brake

Brake

control

SW

Electrical System
Dynamo

AC control
SW

AC compressor

Cabin

temperature

sensor

RPM
sensor

AC control
SW

Brake
control SW

Automotive Application Framework
(e.g., AUTOSAR)

Hardware Virtualization Layer
(e.g., device drivers)

A Software Architecture View

Interacting
Features

Interacting
Features!!

© Copyright Malina Software 202317

The Feature Interactions Problem

 Feature interactions may occur when two or more feature
executions inadvertently interfere with each other,
resulting in an undesirable outcome

 Necessary conditions:
▪ A hazardous precondition (initial state): combination of system and

environment states that has the potential to cause feature interactions

▪ Shared resources: One or more system or environment resources that
are shared by interacting/concurrent feature executions

▪ Temporal overlap: A particular interleaving of action steps belonging to
different feature executions leading to at least one of them producing
an undesirable outcome

• But, only some interleavings can cause feature interaction (time dependent,
state dependent)

© Copyright Malina Software 202318

The Feature Interactions Problem (cont.)

 What makes feature interactions highly problematic:

▪ The source and cause of the conflict are not always obvious (i.e., difficult to
anticipate)

▪ The interacting features are often specified independently of each other

▪ In feature rich systems, this can result in an unmanageable combinatorial
explosion of possible feature interaction scenarios

• E.g.: In classical telephony, these were in the order of 104

• How many can we expect to find in something as complex as a “Smart City”?

 It is safe to conclude that in these kinds of complex systems it
will never be practically feasible to identify, in advance, all
possible feature interactions that can (and, invariably, will) occur

© Copyright Malina Software 202319

The Real World:

Physical

Constraints

Unpredictability

Idiosyncrasy Mutability

Concurrency

Complexity

A well-known design

challenge for software

Instances of the same

class can behave very

differently

Large size + intricate

structure and behavior

Uncertainty about what

can happen and when

Dynamically changing

characteristics

Limits dictated by

laws of physics

© Copyright Malina Software 202320

Part 4:
The

Reality-Software
Relationship

© Copyright Malina Software 202321

Back to Our Teaser…

Do you happen to know the interesting story
behind this number?

 It is the answer to: “Life, the Universe, and Everything”
 (Sadly, the exact wording of the question has been lost)

Douglas Adams: “The Hitchhiker's Guide to the Galaxy”

© Copyright Malina Software 202322

Back to Our Teaser…

Do you happen to know the interesting story
behind this number?

 It is the answer to: “Life, the Universe, and Everything”
 (Sadly, the exact wording of the question has been lost)

Douglas Adams: “The Hitchhiker's Guide to the Galaxy”

So? What does this have to
do with software?

The only entities that computers
manipulate directly are numbers!

The meaning (semantics) of those numbers
are captured (partly) in the software code

© Copyright Malina Software 202323

How Accurately Can We Model Real-World Semantics in Code?

?

• Continuous (i.e., non-digital)

• Informal (Gödel’s theorem?)

• Complex (heterogeneous)

• Dynamic/mutable

• Unpredictable/chaotic

• Discrete (digital)

• Mathematically formal (logic)

• Comprehensible

• Static (hardware base)

• Deterministic

?

© Copyright Malina Software 202324

How Accurately Can We Model Real-World Semantics in Code?

?

• Continuous (i.e., non-digital)

• Informal (Gödel’s theorem?)

• Complex (heterogeneous)

• Dynamic/mutable

• Unpredictable/chaotic

• Discrete (digital)

• Mathematically formal (logic)

• Comprehensible

• Static (hardware base)

• Deterministic

How much information is
lost when we model reality
using a computer?

?

© Copyright Malina Software 202325

The Complex Nature of Reality

Metabolic processes
http://biochemical-pathways.com/#/map/1

Metabolism [dictionary.com]: the sum of the physical and chemical processes in

an organism by which its material substance is produced, maintained, and

destroyed…

© Copyright Malina Software 202326

The Complex Nature of Reality

Metabolic processes
http://biochemical-pathways.com/#/map/1

© Copyright Malina Software 202327

Some Key Observations

 A bewildering forest of connections!

 No clear or crisp modularity

© Copyright Malina Software 202328

Some Key Observations

 A bewildering forest of connections!

 No clear or crisp modularity ??

© Copyright Malina Software 202329

Part 5:
Our Current Arsenal

for Complex
(“Smart”?) System

Design

© Copyright Malina Software 202330

Reminder: General Capabilities of “Smart” Systems*

A system that can:
a. Sense the state of its context and detect relevant changes

in that context or in its own internal state, as they occur
(i.e., in real time)

b. Respond to such changes in a timely manner in a way that is
consistent with or conducive to its intended purpose

c. [advanced] Autonomously adjust its behavior to deal with
previously unknown or unexpected situations based on
available data and/or its history

*NB: my definition

Capable of interacting
effectively with the “real”
(i.e., physical) world

Key Question:

Do we currently have the know-how to

design and build such “Smart” systems

in a reliable and systematic manner?

© Copyright Malina Software 202331

Miller’s Magic Number 7 (plus or minus 2)

 A thesis dealing with the limits of human cognition

▪ An average human can keep track of a maximum of 7  2 items in short-
term memory

 Inspired further psychological research into other cognition
limits:

▪ Rapid enumeration of number of objects (“subitizing”): limit of 4

▪ etc.

G. A. Miller

“... as a slow-witted human being I have a very small
head and I had better learn to live with it and to
respect my limitations and give them full credit.”

Edsgar W. Dijkstra:

© Copyright Malina Software 202332

The Technique of “Chunking”

 A method of overcoming the “7  2” limit

▪ E.g.: 12128254767 versus 1-212-825-4767

▪ An application of the old “divide and conquer” method, applied
recursively

▪ In essence, it is a form of abstraction

“the act of considering something as a general quality or characteristic, apart from

concrete realities, specific objects, or actual instances” [Dictionary.com]

 Abstraction has been recognized as an essential skill
in system design (software or otherwise):

Comm. of the ACM 50(4): 36-42

© Copyright Malina Software 202333

The KISS* Principle of Design

(*) Keep It Simple Stu**d

“Simplicity is a prerequisite for reliability”

“The art of programming is about organizing complexity”

Edsgar W. Dijkstra:

A B

C D

• Each module performs a single
well-defined function/feature
(“Divide-and-Conquer” approach)

• Inter-module couplings are
minimized

AB CDE

FGH IJ

• Modules combine multiple
functions

• Large number of inter-module
couplings

© Copyright Malina Software 202334

Step 1: Partition and reduce (abstraction)

Traditional “Divide and Conquer” Modeling

Chunk
C

Chunk D

Chunk
A

Chunk
B

Chunk F
Chunk E

Chunk A

.

.

.

.

.

.

Decomposition of A

Chunk
F

Decomposition of F

Step 0: A Complex System

Step 2: Recurse Step 3: Reassemble

© Copyright Malina Software 202335

Step 1: Partition and reduce (abstraction)

Traditional “Divide and Conquer” Modeling

Chunk
C

Chunk D

Chunk
A

Chunk
B

Chunk F
Chunk E

Chunk A

.

.

.

.

.

.

Decomposition of A

Chunk
F

Decomposition of F

Step 0: A Complex System

Step 2: Recurse Step 3: Reassemble

© Copyright Malina Software 202336

Example: Modeling the Lifecycle of a Frog

 A continuous and idiosyncratic dynamic process

TADPOLE ADULT
FROG

MEZOMORPH

Frog

age > 4 weeks age > 10 weeks

Tadpole Mezomorph
Adult
Frog

Frog A: at 7 weeks
Frog B: at 7 weeks

 Classification is an
imperfect and subjective
approximation of reality,
whose primary objective
is to help us cope with
complexity

A “Chunk”

age

Chosen discriminant

Information lost!

© Copyright Malina Software 202337

Example: Modeling the Lifecycle of a Frog

 A more realistic (overlapping) classification

TADPOLE MEZOMORPH
ADULT
FROG

 Not directly supported by any conventional OO
language

 Requires a different approach to classification

B. Selić and A. Pierantonio: “Fixing Classification: A Viewpoint-based Approach, ISOLA 2021

© Copyright Malina Software 202338

What These Two Examples Suggest

 The parking brake problem illustrates a category of
design issues due to the inherent complexity of the
real world, which do not lend themselves readily to
exhaustive analysis

We are unlikely to have the ability to design systems that will
incorporate ready-made solutions to all possible eventualities that
might arise in reality

 The dynamic and “fuzzy” classification problem
points out that our current technologies are based
on an idealized (mathematical?) view of reality and,
hence, inadequate

▪ … and that, perhaps, given the semantic gap between these
technologies and reality, we may never be able to fully bridge the
gap

© Copyright Malina Software 202339

Back to Our Key Question…

A system that can:
a. Sense the state of its context and detect relevant changes

in that context or in its own internal state, as they occur
(i.e., in real time)

b. Respond to such changes in a timely manner in a way that is
consistent with or conducive to its intended purpose

c. [advanced] Autonomously adjust its behavior to deal with
previously unknown or unexpected situations based on
available data and/or its history

*NB: my definition

Capable of interacting
effectively with the “real”
(i.e., physical) world

Key Question:

Do we currently have the know-how to

design and build such “Smart” systems

in a reliable and systematic manner?

© Copyright Malina Software 202340

Back to Our Key Question…

A system that can:
a. Sense the state of its context and detect relevant changes

in that context or in its own internal state, as they occur
(i.e., in real time)

b. Respond to such changes in a timely manner in a way that is
consistent with or conducive to its intended purpose

c. [advanced] Autonomously adjust its behavior to deal with
previously unknown or unexpected situations based on
available data and/or its history

*NB: my definition

Capable of interacting
effectively with the “real”
(i.e., physical) world

Key Question:

Do we currently have the know-how to

design and build such “Smart” systems

in a reliable and systematic manner?

© Copyright Malina Software 202341

Part 6:
What Can We Do?

© Copyright Malina Software 202342

The Loss of Certainty!!

implies

© Copyright Malina Software 202343

D.Garlan’s Research Program for Dealing with Uncertainty

 Utility instead of correctness

 Bounded approximation instead of precision [certainty?]

 Closed-loop systems ()

 Incorporate uncertainty as a first-class design concern

 Resiliency/adaptation in the presence of
unpredictable/unexpected events

 New formal methods and tools for reasoning in the presence
of uncertainty

 New methods of machine learning that ensure “reasonable”
behavior ()

D. Garlan, “Software Engineering in an Uncertain World”, Proc. FSE/SDP

Workshop on Future Software Engineering Research, (125-128) 2010.

David Garlan

© Copyright Malina Software 202344

Closed Loop Systems

 Based on classical feedback control theory

System

Output = f(State, Input)

Control
System

OutputInput

Controlinput

The system may depart
from its desired behavior
for any of a variety of
known or unknown reasons
(including bugs)

The control system
provides supplementary
inputs designed to
restore the system to
the desired
state/behavior
regardless of what
caused the erroneous
behavior

Example: MAPE(K)

(Monitor, Analyze, Plan,
Execute) (K = Knowledge)

© Copyright Malina Software 202345

Feedback Control in Software: Example

 [1976] The SL-1 PBX:

▪ Run-time faults had to be detected
and fixed in real-time without service
disruption

 The “Audit” program

▪ An independent memory crawler and
data consistency enforcer

Invariant: If this is >0 then

this must be set to H.FFFF

Asserted
correct value!

This early piece of software manifests a key idea that may
be crucial to how we construct software in the future!

© Copyright Malina Software 202346

The SL-1 Audit Program

 The SL-1 Audit program

SL-1
Software

The “Audit”
Program

DataStateInput

AuditFixes

back

© Copyright Malina Software 202347

The Role of AI Components

 The “K” in MAPE-K provides the adaptation
capability through Machine Learning (ML)

 But AI/ML is itself characterized by uncertainty!

▪ Its outputs may or may not be appropriate to a given situation

 A possible architecture for dealing with this:

System

Output = f(State, Input)

MAPE-K…………..

OutputInput

Controlinput

ML
Safety
Gate

Advice

Feedback

Advice

© Copyright Malina Software 202348

Biomimicry as Inspiration

 Neural networks are inspired by mimicking key
features of how “smart” biological systems work

 Biomimicry [https://computingforsustainability.com]:
Biomimicry is a design discipline that studies nature’s best ideas and
then imitates these designs and processes to solve human problems.
Studying a leaf to invent a better solar cell is an example of this
“innovation inspired by nature.”

 Can biomimicry help drive software engineering
research?
The core idea is that nature, imaginative by necessity, has already
solved many of the problems we are grappling with. Animals, plants,
and microbes are the consummate engineers. They have found what
works, what is appropriate, and most important, what lasts here on
Earth. This is the real news of biomimicry: After 3.8 billion years of
research and development, failures are fossils, and what surrounds us
is the secret to survival.

© Copyright Malina Software 202349

Example: What Can We Learn From This?

 A bewildering forest of connections!

 No clear or crisp modularity

© Copyright Malina Software 202350

Example: What Can We Learn From This?

 A bewildering forest of connections!

 No clear or crisp modularity

 Should we perhaps turn our attention from the boxes to
the lines?

© Copyright Malina Software 202351

Example From Another Engineering Discipline

 Jet engine evolution

Basic Jet Engine (simple)

Modern Jet Engine

(complex but efficient)

Large number of
synergistic feedback
and feedforward
iconnections

© Copyright Malina Software 202352

Example From Another Engineering Discipline

 Jet engine evolution

Basic Jet Engine (simple)

Modern Jet Engine

(complex and efficient)

Synergy:

The interaction of elements that,
when combined, produce a total
effect that is greater than the
sum of the individual elements

Large number of
synergistic feedback
and feedforward
iconnections

© Copyright Malina Software 202353

Time for a New Approach to Design?

 We cannot expect to match the complexity of natural systems

 But…

Bad design!

AB CDE

FGH IJ

• Modules combine multiple
synergistic functions/features

• Synergistic
inter-module couplings

Good design?

RQ: Are there meaningful and
useful design patterns based on
synergistic relationships that
can be discovered and
exploited?

© Copyright Malina Software 202354

Time for a New Approach to Design?

 We cannot expect to match the complexity of natural systems

 But…

Bad design!

AB CDE

FGH IJ

• Modules combine multiple
synergistic functions/features

• Synergistic
inter-module couplings

Good design?

RQ: Are there meaningful and
useful design patterns based on
synergistic relationships that
can be discovered and
exploited?

System thinking:

After we have divided and
successfully conquered, perhaps we
should put effort into putting
things back together!

© Copyright Malina Software 202355

Summary

© Copyright Malina Software 202356

1. There is a significant qualitative gap between
reality and the essential nature of computer-based
systems

2. This presents a major hurdle to our stated desire
to construct “smart” systems

3. Our current technologies and established methods
are insufficiently powerful to adequately overcome
this hurdle

4. While we cannot hope to match the complexity and
capabilities of biological systems, they could inspire
the necessary technological and methodological
advances needed to help us achieve our objectives

© Copyright Malina Software 202357

Appendix
A Personal Concern

If you can indulge me for a
moment, what follows is a
heartfelt suggestion to my
younger colleagues, from an
industry veteran…

© Copyright Malina Software 202358

My Appeal: Think!

 ChatGPT will not do it for you

 You will not find a ready-made solution on GitHub

 You will not find it by looking at your “smart”phone or PC

▪ although those might be useful in the process

 Instead, you will have to invent something completely new
by thinking deeply about both the problem and the solution

© Copyright Malina Software 202359

You are Responsible for the Future

 The kinds of highly-complex systems you are being asked to
design and build are unparalleled in history

 They will require much originality and innovation

 …which will require time and large amounts of reflective
thinking…

 …i.e.: “thinking slow”

 Recommended reading:

“If you think about any problem long enough, you
will almost always find a better solution to it.”

-- Ernst Munter, A true engineering master

© Copyright Malina Software 202360

Last but definitely not least, keep in mind:

“Concern for man himself and his fate must always
constitute the chief objective of all technological
endeavours … in order that the creations of our minds
shall be a blessing and not a curse to mankind.”

-- Albert Einstein, 1931

© Copyright Malina Software 202361

	Slide 1: Matching Software with Reality -- “Software Meets the Real World” –
	Slide 2: A Teaser…
	Slide 3
	Slide 4: Where It All Started…
	Slide 5: Where It All Started…
	Slide 6: The First Engineering Applications
	Slide 7: The Consequences
	Slide 8
	Slide 9: The Trend of 21st Century Software…
	Slide 10: The Trend of 21st Century Software…
	Slide 11: General Capabilities of “Smart” Systems*
	Slide 12: General Capabilities of “Smart” Systems*
	Slide 13
	Slide 14: Case Study: Hi-Tech Parking Brake (1)
	Slide 15: Case Study: Hi-Tech Parking Brake (2)
	Slide 16: “Divide and Conquer”?
	Slide 17: The Feature Interactions Problem
	Slide 18: The Feature Interactions Problem (cont.)
	Slide 19: The Real World:
	Slide 20
	Slide 21: Back to Our Teaser…
	Slide 22: Back to Our Teaser…
	Slide 23: How Accurately Can We Model Real-World Semantics in Code?
	Slide 24: How Accurately Can We Model Real-World Semantics in Code?
	Slide 25: The Complex Nature of Reality
	Slide 26: The Complex Nature of Reality
	Slide 27: Some Key Observations
	Slide 28: Some Key Observations
	Slide 29
	Slide 30: Reminder: General Capabilities of “Smart” Systems*
	Slide 31: Miller’s Magic Number 7 (plus or minus 2)
	Slide 32: The Technique of “Chunking”
	Slide 33: The KISS* Principle of Design
	Slide 34: Traditional “Divide and Conquer” Modeling
	Slide 35: Traditional “Divide and Conquer” Modeling
	Slide 36: Example: Modeling the Lifecycle of a Frog
	Slide 37: Example: Modeling the Lifecycle of a Frog
	Slide 38: What These Two Examples Suggest
	Slide 39: Back to Our Key Question…
	Slide 40: Back to Our Key Question…
	Slide 41
	Slide 42: The Loss of Certainty!!
	Slide 43: D.Garlan’s Research Program for Dealing with Uncertainty
	Slide 44: Closed Loop Systems
	Slide 45: Feedback Control in Software: Example
	Slide 46: The SL-1 Audit Program
	Slide 47: The Role of AI Components
	Slide 48: Biomimicry as Inspiration
	Slide 49: Example: What Can We Learn From This?
	Slide 50: Example: What Can We Learn From This?
	Slide 51: Example From Another Engineering Discipline
	Slide 52: Example From Another Engineering Discipline
	Slide 53: Time for a New Approach to Design?
	Slide 54: Time for a New Approach to Design?
	Slide 55
	Slide 56
	Slide 57
	Slide 58: My Appeal: Think!
	Slide 59: You are Responsible for the Future
	Slide 60: Last but definitely not least, keep in mind:
	Slide 61

